Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 598(7880): 368-372, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34526721

RESUMO

Transcription-coupled DNA repair removes bulky DNA lesions from the genome1,2 and protects cells against ultraviolet (UV) irradiation3. Transcription-coupled DNA repair begins when RNA polymerase II (Pol II) stalls at a DNA lesion and recruits the Cockayne syndrome protein CSB, the E3 ubiquitin ligase, CRL4CSA and UV-stimulated scaffold protein A (UVSSA)3. Here we provide five high-resolution structures of Pol II transcription complexes containing human transcription-coupled DNA repair factors and the elongation factors PAF1 complex (PAF) and SPT6. Together with biochemical and published3,4 data, the structures provide a model for transcription-repair coupling. Stalling of Pol II at a DNA lesion triggers replacement of the elongation factor DSIF by CSB, which binds to PAF and moves upstream DNA to SPT6. The resulting elongation complex, ECTCR, uses the CSA-stimulated translocase activity of CSB to pull on upstream DNA and push Pol II forward. If the lesion cannot be bypassed, CRL4CSA spans over the Pol II clamp and ubiquitylates the RPB1 residue K1268, enabling recruitment of TFIIH to UVSSA and DNA repair. Conformational changes in CRL4CSA lead to ubiquitylation of CSB and to release of transcription-coupled DNA repair factors before transcription may continue over repaired DNA.


Assuntos
Microscopia Crioeletrônica , Reparo do DNA , Complexos Multiproteicos/química , Complexos Multiproteicos/ultraestrutura , RNA Polimerase II/química , RNA Polimerase II/ultraestrutura , Transcrição Gênica , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Transporte/ultraestrutura , DNA Helicases/química , DNA Helicases/metabolismo , DNA Helicases/ultraestrutura , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/metabolismo , Enzimas Reparadoras do DNA/ultraestrutura , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/ultraestrutura , Humanos , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/ultraestrutura , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Fator de Transcrição TFIIH/química , Fator de Transcrição TFIIH/metabolismo , Fator de Transcrição TFIIH/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Fatores de Transcrição/ultraestrutura , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação
2.
J Biol Chem ; 297(1): 100862, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34116057

RESUMO

The Elongin complex was originally identified as an RNA polymerase II (RNAPII) elongation factor and subsequently as the substrate recognition component of a Cullin-RING E3 ubiquitin ligase. More recent evidence indicates that the Elongin ubiquitin ligase assembles with the Cockayne syndrome B helicase (CSB) in response to DNA damage and can target stalled polymerases for ubiquitylation and removal from the genome. In this report, we present evidence that the CSB-Elongin ubiquitin ligase pathway has roles beyond the DNA damage response in the activation of RNAPII-mediated transcription. We observed that assembly of the CSB-Elongin ubiquitin ligase is induced not just by DNA damage, but also by a variety of signals that activate RNAPII-mediated transcription, including endoplasmic reticulum (ER) stress, amino acid starvation, retinoic acid, glucocorticoids, and doxycycline treatment of cells carrying several copies of a doxycycline-inducible reporter. Using glucocorticoid receptor (GR)-regulated genes as a model, we showed that glucocorticoid-induced transcription is accompanied by rapid recruitment of CSB and the Elongin ubiquitin ligase to target genes in a step that depends upon the presence of transcribing RNAPII on those genes. Consistent with the idea that the CSB-Elongin pathway plays a direct role in GR-regulated transcription, mouse cells lacking the Elongin subunit Elongin A exhibit delays in both RNAPII accumulation on and dismissal from target genes following glucocorticoid addition and withdrawal, respectively. Taken together, our findings bring to light a new role for the CSB-Elongin pathway in RNAPII-mediated transcription.


Assuntos
DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Elonguina/genética , Proteínas de Ligação a Poli-ADP-Ribose/genética , RNA Polimerase II/genética , Ubiquitina-Proteína Ligases/genética , Animais , Síndrome de Cockayne/enzimologia , Síndrome de Cockayne/genética , DNA Helicases/química , DNA Helicases/ultraestrutura , Reparo do DNA/genética , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/ultraestrutura , Elonguina/química , Elonguina/ultraestrutura , Humanos , Camundongos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Complexos Multiproteicos/ultraestrutura , Proteínas de Ligação a Poli-ADP-Ribose/química , Proteínas de Ligação a Poli-ADP-Ribose/ultraestrutura , RNA Polimerase II/química , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Ubiquitina/química , Ubiquitina/genética , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/ultraestrutura , Ubiquitinação/genética
3.
Nat Commun ; 12(1): 2962, 2021 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016969

RESUMO

The human type IIA topoisomerases (Top2) are essential enzymes that regulate DNA topology and chromosome organization. The Topo IIα isoform is a prime target for antineoplastic compounds used in cancer therapy that form ternary cleavage complexes with the DNA. Despite extensive studies, structural information on this large dimeric assembly is limited to the catalytic domains, hindering the exploration of allosteric mechanism governing the enzyme activities and the contribution of its non-conserved C-terminal domain (CTD). Herein we present cryo-EM structures of the entire human Topo IIα nucleoprotein complex in different conformations solved at subnanometer resolutions (3.6-7.4 Å). Our data unveils the molecular determinants that fine tune the allosteric connections between the ATPase domain and the DNA binding/cleavage domain. Strikingly, the reconstruction of the DNA-binding/cleavage domain uncovers a linker leading to the CTD, which plays a critical role in modulating the enzyme's activities and opens perspective for the analysis of post-translational modifications.


Assuntos
DNA Topoisomerases Tipo II/ultraestrutura , Proteínas de Ligação a Poli-ADP-Ribose/ultraestrutura , Regulação Alostérica , Animais , Domínio Catalítico , Linhagem Celular , Microscopia Crioeletrônica , DNA/metabolismo , DNA/ultraestrutura , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/isolamento & purificação , DNA Topoisomerases Tipo II/metabolismo , Humanos , Mesocricetus , Modelos Moleculares , Nucleoproteínas , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/isolamento & purificação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...